MATHEMATISCH CENTRUM 2de Boerhaavestraat 49 AMSTERDAM.

Statistical Department

Head of Department: Prof. Dr D.van Dantzig Chief of Statistical Consultation: Prof. Dr J.Hemelrijk.

Report SP 34

A sequential test with three possible decisions for comparing two unknown probabilities, based on groups of observations

by Constance van Eeden

1. Introduction.

We consider two series of independent trials, e.g. two processes A and B, each trial resulting in a success or a failure with probabilities b, i-p and b', i-p' for the two processes respectively.

A sequential test with two possible decisions for the comparison of $\mathfrak p$ and $\mathfrak p$, developed by WALD [6], may be used if the trials are executed in pairs, each pair consisting of one trial for each process.

For groups of trials of both processes a sequential test with two possible decisions for comparing β and β has been described in [8]. This test is carried out as follows.

Suppose the group of trials, constituting the i-th stage of the test, consists of n_i trials for process A and m_i for process B. If the numbers of successes are a_i and b_i respectively, a_i and b_i both possess a binomial probability distribution with parameters n_i , p and m_i , p' respectively.

The following transformation is then used: if n' possesses a binomial probability distribution with parameters n and p the random variable

$$(1.1) \begin{cases} y = 2 \operatorname{arcsin} \sqrt{\frac{m}{n}} \\ y = \sqrt{\frac{2}{n}} \end{cases}$$

$$y = \sqrt{\frac{2}{n}}$$

$$y = \pi - \sqrt{\frac{2}{n}}$$

$$y = \pi$$

is, for large n, approximately normally distributed with mean

and variance

$$(1.3) \sigma^2 = \frac{1}{n} + \frac{1}{n^2} \cdot \frac{2}{n}$$

The transformation (1.1) is applied to \underline{a}_i and \underline{b}_i ; after this transformation, these random variables will be denoted by \underline{u}_i and \underline{w}_i respectively.

¹⁾ Random variables are denoted by underlined symbols; the same symbols, not underlined, are used to denote values assumed by these random variables.

²⁾ Tables of y (in radians) and σ^2 are given in [8] for n = 10(1)50 and $0 \le n' \le n$.

The sequential test of WALD [6] with two possible decisions for the mean of a normal distribution with known variance is then applied to

Both abovementioned tests are tests with two possible decisions, i.e. the tests result in one of the decisions $\beta > \beta'$ or $\beta < \beta'$.

The sequential test for comparing p and p' for the case of pairs of trials may be generalized to a test with three possible decisions, i.e. a test resulting in one of the decisions p > p', p < p' or $p \approx p'$, by means of a test developed by DE BOER [2]. This case will not be considered here.

In this paper the abovementioned test for comparing \$\beta\$ and \$\beta'\$ for groups of trials will be generalized by means of a sequential test for the mean of a normal distribution with known variance developed by SOBEL and WALD [7].

The sequential test of WALD with two and the test of SOBEL and WALD with three possible decisions for the mean of a normal distribution with known variance will be described first.

2. Sequential test for the mean of a normal distribution with known variance.

2.1. Two possible decisions.

For the case that the successive observations $\infty, \infty, \infty, \infty$ are idependent observations of one random variable ∞ , possessing a normal probability distribution with mean μ and known variance σ^2 , WALD's sequential test with two possible decisions for μ has been described in [6] (p. 117-124). This test will be described here for the case that the variance is not constant. This results in a small change in WALD's test; the proof of the validity of this test follows at once from WALD's own proofs.

For the test a value μ_o of μ must be chosen, the two possible decisions being: $\mu < \mu_o$ and $\mu > \mu_o$, where we may substitute \leq resp. \geq for < resp. >.

Furthermore two values μ , and μ_z must be chosen with

such that the decision $\mu > \mu_o$ is considered an incorrect decision if $\mu \leq \mu_o$ and the decision $\mu < \mu_o$ is considered incorrect if $\mu \geq \mu_a$; for values of μ between μ_o and μ_a it is not important which decision is taken.

The concepts "correct" and "incorrect decision" are thus

defined as follows:

Table I
Correct and incorrect decisions

value of u	correct	incorrect
varue or h	decision	
µ≤ µ,	H < H.	m> Ha
th≥ th≥	H > Ho	$\mu < \mu_o$
H1 < H2	$\mu < \mu_0$ and $\mu > \mu_0$	nd —

The interval (μ_{1},μ_{2}) is called the indifference region. If:

 $\alpha =$ the probability of acceptance of $\mu > \mu_0$ if $\mu = \mu_0$

 β = the probability of acceptance of $\mu < \mu_o$ if $\mu = \mu_2$, and if α and β are chosen both $< \frac{1}{2}$ the probability of an incorrect decision is $\leq \alpha$ for $\mu \leq \mu_o$ and $\leq \beta$ for $\mu \geq \mu_2$.

The value $\mu_{\rm e}$ is of no further importance for the performance of the test.

The test is carried out as follows (σ_i^2 is the known variance of x_i):

Additional observations are taken as long as:

(2.1)
$$\frac{\ln B}{\mu_2 - \mu_1} < \frac{\sum_{i=1}^{m} \frac{x_i - \frac{\mu_1 + \mu_2}{2}}{\sigma_i^2}}{\sqrt{\mu_2 - \mu_1}} < \frac{\ln A}{\mu_2 - \mu_1},$$

where

$$A = \frac{1-B}{\alpha} > 1$$

$$B = \frac{B}{1-\alpha} < 1.$$

The test is terminated as soon as (2.1) does not hold and the decision $\mu > \mu_e$ is then taken if

$$\sum_{i=1}^{\infty} \frac{\sum_{j=1}^{\infty} \frac{\mu_j + \mu_2}{\sigma_i^2}}{\sum_{j=1}^{\infty} \frac{h_j + \mu_2}{\sigma_i^2}} \ge \frac{h_n A}{\mu_2 - \mu_1}$$

and the decision $\mu < \mu_o$ if

$$\sum_{i=1}^{\infty} \frac{\alpha_i - \frac{\mu_1 + \mu_2}{2}}{\sigma_i^2} \leq \frac{\ln B}{\mu_2 - \mu_1}$$

If the random variables ∞ , all have the same variance σ^2 the test may be carried out graphically, as indicated by WALD [6] (p. 118-121).

2,2. Three possible decisions.

The sequential test with three possible decisions for the mean μ of a normal distribution with known variance, developed by SOBEL and WALD has been described in [7] for the case that the variance of $\underline{\infty}$ is a constant. This restriction is again dropped here.

For the test two values μ_a and μ_a' and four values μ_a , μ_a , μ_a and μ_a must be chosen such that

the three possible decisions being:

- 1. H < H.
- 2. H > Ho
- 3. Ho & H & H'a.

The intervals (μ_1, μ_2) and (μ_1, μ_4) are the indifference regions.

The concepts "correct" and "incorrect decision" are defined as follows:

Table II
Correct and incorrect decisions

value of u	correct	incorrect
	decision	
	H < H.	(Ho = H = Ho H > Ho
H, < H < H2	Hos Hs Ho	
H. S. H. & H.	Hoshs Ho	H > H0 H < H0
H3< H4	Hos Hs Ho	

The values μ_{\bullet} and μ_{\bullet}' are of no further importance for the performance of the test.

Suppose T is the sequential test of section 2.1 for testing $\mu=\mu_{\rm i}$ against $\mu=\mu_{\rm i}$, then this test leads to a decision as soon as

(2.2)
$$\frac{\ln B}{\ln B} < \sum_{i} \frac{\alpha_i - \mu_i + \mu_s}{\sigma_i^2} < \frac{\ln B}{\mu_s - \mu_s}$$

does not hold, where

$$A = \frac{1-B}{A}, \qquad B = \frac{B}{1-A},$$

 α = the probability of accepting $\mu \ge \mu_{\rm o}$ according to T if $\mu_{\rm o}$ $\mu_{\rm o}$ according to T if $\mu_{\rm o}$ $\mu_{\rm o}$.

Suppose furthermore that T' is the analogous sequential test for testing $\mu=\mu_3$ against $\mu=\mu_4$ then T' leads to a decision as soon as

(2.3)
$$\frac{\ln B'}{\mu_4 - \mu_8} < \frac{\sum_{i=1}^{m} \frac{\mu_8 + \mu_4}{2}}{\sigma_i^2} < \frac{\ln A'}{\mu_4 - \mu_8}$$

does not hold, where

$$A' = \frac{1 - \beta'}{\alpha'}, \qquad B' = \frac{\beta'}{1 - \alpha'}.$$

 α' = the probability of accepting $\mu > \mu'$ according to T if $\mu = \mu$

 β' = the probability of accepting $\mu \leq \mu'$ according to T' if $\mu = \mu_4$. We introduce the following notation

$$\begin{array}{c}
\alpha = \frac{\ln R}{\mu_{2} - \mu_{1}} \\
b = \frac{\ln B}{\mu_{2} - \mu_{1}} \\
b' = \frac{\ln B'}{\mu_{4} - \mu_{3}} \\
\sum_{i=1}^{\infty} \frac{\alpha_{i} - \frac{\mu_{1} + \mu_{2}}{\alpha_{i}^{2}}}{\alpha_{i}^{2}} = y_{n}
\end{array}$$

then according to T a decisions is taken as soon as

$$(2.2a)$$
 $b < 4 < a$

does not hold and according to T' as soon as

$$(2.3a)$$
 $6 < 9 < 0$

does not hold.

From (2.4) it follows that a and a' are positive, b and b' negative and

If now the inequalities

are fulfilled, it follows from (2.5) and (2.6) that T' cannot lead to the decision $\mu > \mu'$ before the decision $\mu \ge \mu$ has been found according to T and that T cannot give the decision $\mu < \mu_e$ before the decision $\mu < \mu'$ has been given by T'.

In that case only the following decision according to T and T are possible:

- 1. T' gives the decision $\mu * \mu'$ and T gives (at the same or a later step) the decision $\mu * \mu_0$ or the decision $\mu * \mu_0$.
- 2. T gives the decision $\mu \ge \mu_0$ and T gives (at the same or a later step) the decision $\mu \ge \mu_0$ or the decision $\mu \ge \mu_0$.

The <u>sequential test with three possible decisions</u> is then defined as follows:

Additional observations are taken as long as not both tests T and T' have given a decision. As soon as both tests are terminated a decision is taken according to the following rules:

- 1. $\mu < \mu_0$ if T' has given the decision $\mu \leq \mu_0$, and T the decision $\mu < \mu_0$,
- 2. $\mu > \mu'$ if T has given the decision $\mu > \mu$ and T' the decision $\mu > \mu'$,
- 3. $\mu_0 \le \mu \le \mu_0'$ if T has given the decision $\mu \ge \mu_0$ and T the decision $\mu \le \mu_0'$.

If (2.6) does not hold there exists the possibility of accepting $\mu > \mu'$ according to T and of afterwards accepting $\mu < \mu_{o}$ ($< \mu'_{o}$) according to T. This kind of contradictory result is excluded by (2.6).

If the random variables ∞ ; all have the same variance σ^* the test may be carried out graphically, cf. [7].

3. <u>Sequential test with three possible decisions for the comparison of two probabilities.</u>

On the basis of the test of section 2.2 a sequential test with three possible decisions for comparing two unknown probabilities p and p may be developed as follows.

To the variables q_i and b_i (see section 1) one of the following transformations is applied

(3.1)
$$y = 2 \operatorname{arcsin} \sqrt{\frac{n}{n}}$$
 $y = 2 \operatorname{arcsin} \sqrt{\frac{n}{n}}$ $y = 2 \operatorname{arcsin} \sqrt{\frac{n}{n}}$ $y = 2 \operatorname{arcsin} \sqrt{\frac{1}{4n}}$ $y = 2 \operatorname{arcsin} \sqrt{\frac{1}{4n}}$ $y = 2 \operatorname{arcsin} \sqrt{\frac{1}{4n}}$ $y = 2 \operatorname{arcsin} \sqrt{\frac{n}{n}}$ $y = 2$

where \underline{n} possesses a binomial probability distribution with parameters \underline{n} and \underline{p} .

The transformation (3.1) is introduced by FISHER [4], the transformation (3.2) by BARTLETT [1] and (3.3) is given in [8]. For further information about the transformations we refer to [3] (p. 395-416).

Denoting the variables a_i and b_i , after their transformation, by u_i and v_i the sequential test of section 2.2 is applied to the random variables

$$\mathfrak{L}_{i} = \mathfrak{L}_{i} - \mathfrak{L}_{i}$$
 (i.e.1, 2, 3,)

which possess, for large n; and m;, approximately a normal probability distribution with mean

(3.4)
$$\mu = 2 \arcsin \sqrt{p} - 2 \arcsin \sqrt{p} = 2 \arcsin (\sqrt{pq} - \sqrt{pq})$$
 $q = 1 - p$

and variance

(3.5)
$$\sigma_{i} = \frac{1}{n_{i}} + \frac{1}{m_{i}} + \frac{1}{m_{i}} + \frac{1}{m_{i}}.$$

Two values μ_a and μ_a' and four values μ_a , μ_a , μ_a , μ_a , and μ_a of μ_a must be chosen, with:

(3.6)
$$\mu_1 < \mu_0 < \mu_2 < \mu_4 < \mu_6 < \mu_4$$

³⁾ Tables of $y = 2 \arcsin \sqrt{\infty}$ are given in [5] for $\infty = 0.000(0.001)1.000$, p. 70-71, with y in radians.

⁴⁾ Tables of $y = 2 \arcsin\sqrt{\frac{1}{4m}}$ and $y = \pi - 2 \arcsin\sqrt{\frac{1}{4m}}$ are given in [3], p. 406 for m = 10(1)50.

and four values α , α' , β and β' (all $<\frac{1}{2}$) with (see (2.6))

(3.7)
$$\begin{cases} \frac{\ln B}{\mu_{2}-\mu_{1}} \leq \frac{\ln B'}{\mu_{4}-\mu_{0}}, \\ \frac{\ln A}{\mu_{2}-\mu_{1}} \leq \frac{\ln A'}{\mu_{4}-\mu_{0}}, \end{cases}$$

where

$$A = \frac{1 - \beta}{\alpha}$$

$$A' = \frac{1 - \beta'}{\alpha'}$$

$$B' = \frac{\beta'}{1 - \alpha'}$$

Having chosen these values the abovementioned test may be applied, leading to one of the decisions:

1.
$$\mu < \mu_0$$
(3.8)
2. $\mu > \mu_0$
3. $\mu_0 = \mu \leq \mu_0$.

We shall translate these decisions in terms of β and β' . Let

(3.9)
$$\sqrt{pq'} - \sqrt{p'q} = \delta$$
.

then

$$(3.10) \qquad \mu = 2 \operatorname{arcsin} \delta \qquad |\delta| = 1$$

The functional relationship (3.9) between β and β' for given δ^2 consists (see fig. 1) of the arcs PQ and RS of the ellipse:

(3.11)
$$p^2 + p'^2 - 2pp'(1-2\delta^2) - 2\delta^2(p+p') + \delta' = 0$$

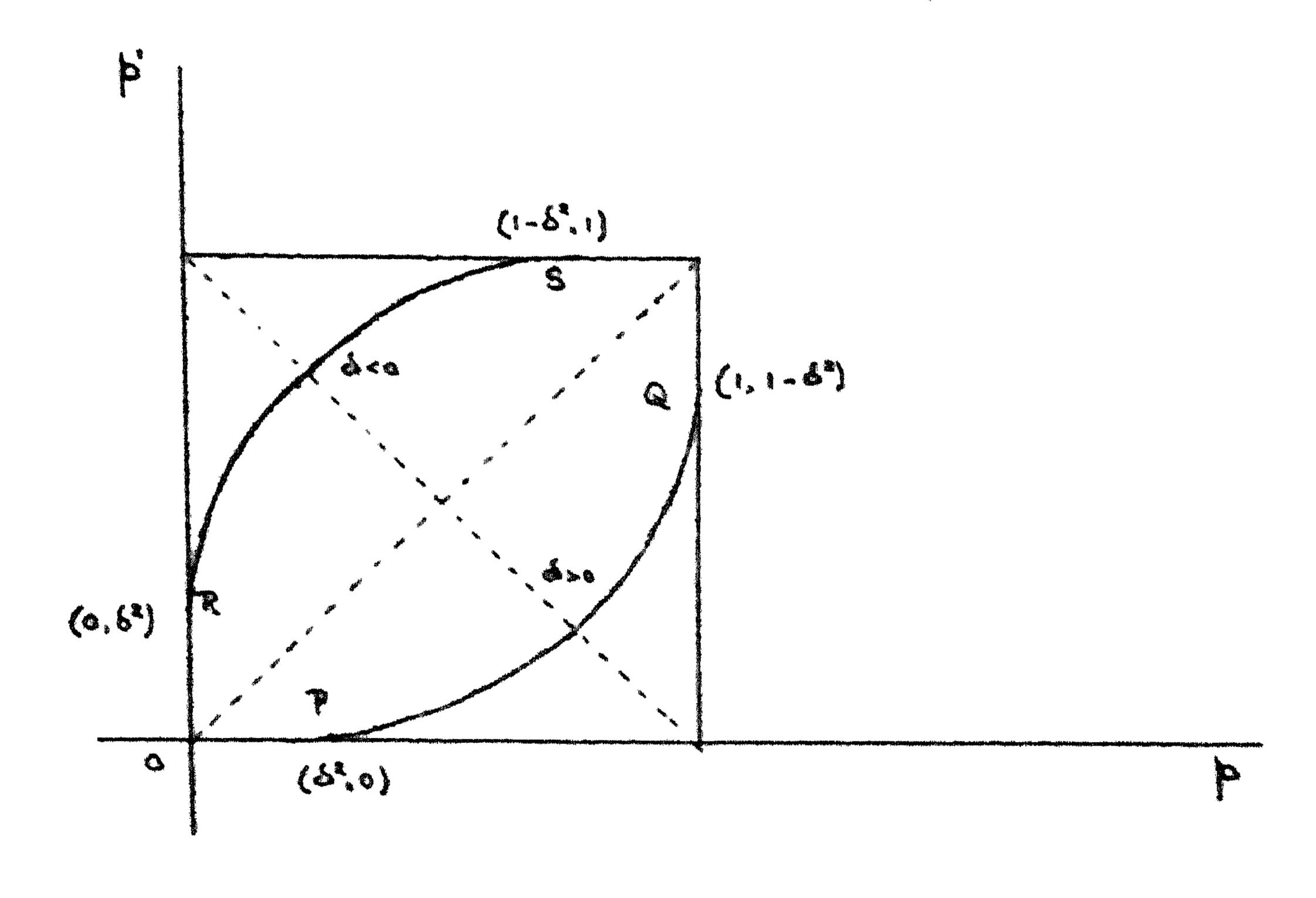


fig. 1.

Functional relationship between p and p' for given value of & .

Choosing two values δ_{i} and δ'_{i} and four values δ_{i} , δ_{i} , δ_{i} , and δ_{i} of δ with

the decisions (3.8) are equivalent with the following decisions for δ (see (3.40)):

and hence with the following decisions for p and p':

1. the point (p,p') lies above the arc RS of figure with $\delta = \delta$,

(3.14) 2. the point (p,p') lies below the arcPQ with $\delta = \delta'_{b}$,

3. the point (p,p') lies on or between the arcs PQ and RS with $\delta_{-}\delta_{0}'$ and $\delta_{-}\delta_{0}$ respectively.

The values δ_i , δ_i , δ_i , and δ_i may be chosen by means of fig. 2, where the arcs PQ and RS are given for several values of δ_i .

One may also choose these values as follows:

1. WALD [6] uses the ratio

On the line p+p'=1 & can be expressed in terms of u:

(3.15)
$$u = \left(\frac{1+\delta}{1-\delta}\right)^{2},$$

which is equivalent to

(3.16)
$$\begin{cases} \delta = 0 & \text{if } u = 1 \\ \delta = \frac{u+1-2\sqrt{u}}{u-1} & \text{if } u \neq 1. \end{cases}$$

Choosing four values for a with

$$(.317)$$
 $u_1 < u_2 < 1 < u_3 < u_4$

one finds four values for & such that

$$(3.18)$$
 $\delta_1 < \delta_2 < 0 < \delta_3 < \delta_4$

2. On the line b + b' = 1 the equality

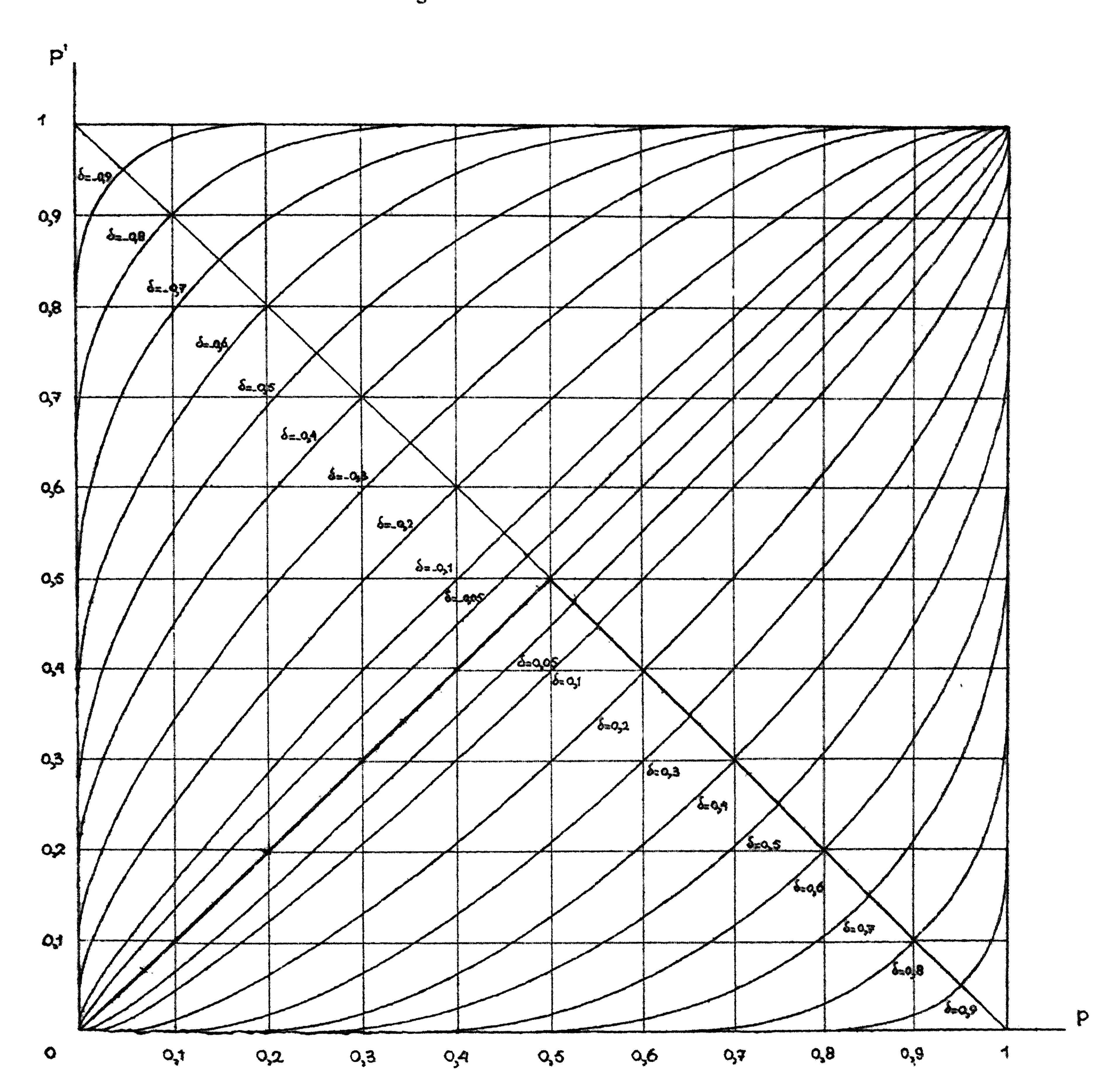
$$(3.19)$$
 $\delta = p - p'$

holds.

Choosing four values for $\beta - \beta'$ one finds four values for δ . The four values of δ (or u respectively) must furthermore be chosen such that (3.7) holds.

Usually one will choose these values symmetrically, i.e. such that

Figure 2



Functional relationship between p and p' for several values of δ .

which is equivalent to

(3.21)
$$\begin{cases} \delta_{4} = -\delta_{1} \\ \delta_{8} = -\delta_{2} \end{cases}$$

and to

$$(3.22)$$
 $u_1 u_4 = u_2 u_5 = 1$

If (3.20) holds, (3.7) is equivalent to

$$(3.23)$$

$$B \leq B'$$

$$A \leq A'$$

Remark

It is not necessary that β and β' are constants. We only need a constant δ .

References.

- [1] Bartlett, M.S., Some examples of statistical methods of research in agriculture and applied biology, Suppl. Journ. Royal Stat. Soc., 4 (1937), 137-183.
- [2] De Boer, J., Sequential test with three possible decisions for testing an unknown probability, Appl. Sci. Res. 3 (1953), 249-259.
- [3] Eisenhart, C., M.W.Hasteryand, W.A.Wallis, e.a., Selected techniques of statistical analysis for scientific and industrial research and production and management engineering, New York, 1947.
- [4] Fisher, R.A., On the dominance ratio, Proc. Royal Soc. of Edinburgh, 42 (1921-1922).
- [5] Hald, A., Statistical tables and formulas, New York, 1952.
- [6] Wald, A., Sequential analysis, New York, 1947.
- [7] Sobel, M. and A.Wald, A sequential decision procedure for choosing one of three hypotheses concerning the unknown mean of a normal distribution, Ann. Math. Stat., 20 (1949), 502-522.
- [8] Statistical Research Group of the Columbia University, Sequential analysis of statistical data, applications, section 3, New York, 1945.